5.4 Kondensator/Entladekurve

5.4.1 Spannungsverlauf am Kondensator

Ein Kondensator C ist auf die Spannung U_0 aufgeladen. Nun wird er über einen Widerstand R entladen. Dann ergibt sich der Verlauf seiner Spannung U_C nach der Formel:

$$U = U_0 \cdot e^{\frac{-t}{RC}} \tag{1}$$

Die Spannung fällt dabei vom Wert $U_C = U_0$ zu Beginn der Entladung (also bei t = 0) ab auf den Wert $U_C = 0$ zum Ende der Entladung (also bei $t = \infty$). Der Verlauf der Entladung zwischen diesen Zeitpunkten hat mit der Exponential-Funktion (Kurzname: e-Funktion) zu tun.

5.4.2 Exponentialfunktionen

Exponentialfunktionen sind Funktionen, bei denen die unabhängige Variable x im Exponent steht.

- Funktion $y = 2^x$: Exponential funktion $2 \cdot 2 \cdot 2 \cdot \cdots 2$
- Funktion $y = x^2$: Polynomfunktion (hier: quadratisch) $x \cdot x$
- Vergleich 2^x und x^2 :

x	0	1	2	3	4	5	6	7
2^x	1	2	4	8	16	32	64	128
x^2	0	1	4	9	16	25	36	49

- 2^x überholt x^2 , aber auch x^3 , x^4 , ...
- 2^x: Exponentielles Wachstum, in der Technik gefährlich
- Beispiel: $m = 1 \text{ kg} \cdot 2^{\frac{t}{1 \text{ h}}}$: Nach 24 Stunden ist $m = 16\,777\,216\,\text{kg}$

5.4.3 Exponentialfunktionen mit negativem Exponenten

Beim Entladen eines Kondensators tritt eine Funktion der Form $y = 2^{-x}$ auf.

•
$$2^{-x} = \frac{1}{2^x}$$
:

x	0	1	2	3	4	5	6	7
2^x	1	2	4	8	16	32	64	128
2^{-x}	1	0,5	0,25	0,125	0,0625	0,03125	0,015625	0,0078125

- $y = 2^{-x}$ in der Technik: Ausgleichsprozesse
 - Abkühlen von Werkstoffen
 - Zerfall bei radioaktiven Stoffen: $N = N_0 \cdot 2^{\frac{-t}{t_H}}$ mit t_H : Halbwertszeit (Hälfte der radioaktiven Kerne sind nach $t = t_H$ zerfallen).

5.4.4 Exponentialfunktion mit Basis ungleich 2

Die Basis einer Exponentialfunktion kann auch andere Werte als 2 haben; die Ergebnisse sollen nun verglichen werden.

• Vergleiche 1^x , 2^x , 10^x :

x	0	1	2	3
1^x	1	1	1	1
2^x	1	2	4	8
10^x	1	10	100	1000
$2^{4\cdot x}$	1	16	256	4096

- Ergebnis: Je größer die Basis, desto schneller das Wachstum bzw. der Zerfall.
- Allerdings ist genau die gleiche Beschleunigung auch durch Einbau eines Faktors vor x (entsprechend einer Verringerung von t_H) möglich:
- $y = 2^{4 \cdot x}$ wächst schneller als $y = 10^x$!

5.4.5 Eulersche Zahl

In der Formel des Verlaufs der Kondensatorspannung tritt die Zahl e als Basis auf.

- e ist die so genannte Eulersche Zahl: $e=2,7\,1828\,1828\,46...$
- In der Physik ist e wichtig in Zusammenhang mit sin, cos, tan.
- In der Mathematik ist e wichtig, da die Steigung von e^x wieder e^x ist (in der Physik ist e daher ebenso wichtig).

5.4.6 Funktionen e^x und e^{-x}

 $y = e^x$ verläuft größenmäßig zwischen $y = 2^x$ und $y = 3^x$.

• Verlauf von $y = e^x$ und $y = e^{-x}$ für x = 1, 2, 3, ...

	x	0	1	2	3	4	5
	e^x	1	2,72	7,39	20,1	54,6	148
ĺ	e^{-x}	1	0,37	0,1350	0,050	0,018	0,0067

• Verlauf von $U = 100 \,\mathrm{V} \cdot \mathrm{e}^{\frac{-t}{1\,\mathrm{s}}}$ für $t = 1\,\mathrm{s}, 2\,\mathrm{s}, 3\,\mathrm{s}$:

t/s	0	1	2	3	4	5
U/V	100	37	13,5	5	1,83	0,67

Zwei Stellen des Verlaufs sollte man sich merken:

- a) Nach $t=\tau$ ist die Kondensatorspannung auf 37% des Anfangswertes gefallen.
- b) Nach $t=5\tau$ ist die Kondensatorspannung auf unter 1% des Anfangswertes gefallen. Der Kondensator gilt dann als "entladen", was aber nicht ganz stimmt, da die Spannung noch immer nicht gleich null ist.